Maple 2016 Questions and Posts

These are Posts and Questions associated with the product, Maple 2016

I have Maple 2016 and Matlab 2016b installed on my Windows destop.

When I run

with(Matlab);
openlink()

in a Maple worksheet the following error window appears.

After closing the window I also see the following error message,

Error, (in Matlab:-openlink) there was a problem finding or loading matlink.dll. Refer to ?Matlab,setup for help configuring your system to work with the Matlab-link.

How to fix the connection from Maple to Matlab?

Good day, everyone

I am trying to code HPM but it's giving me the error code "Error, invalid subscript selector
" once I increase the number of iterations above 2. 

Attached below is the code. 

HPM.mw

Thanks 

Good day, all.

Please, I am working on the following code but found out that the command solve is not displaying any result. Your assistance and suggestions would be appreciated. Thank you, and best regards.

 

restart;
NULL;
t := sum(a[j]*q^j, j = 0 .. 9);
H := diff(t, q);
F := diff(t, q $ 2);
p1 := simplify(eval(t, q = x)) = y[n];
p2 := simplify(eval(F, q = x)) = f[n];
p3 := simplify(eval(F, q = x + h/4)) = f[n + 1/4];
p4 := simplify(eval(F, q = x + h/2)) = f[n + 1/2];
p5 := simplify(eval(F, q = x + (3*h)/4)) = f[n + 3/4];
p6 := simplify(eval(F, q = x + h)) = f[n + 1];
p7 := simplify(eval(F, q = x + (5*h)/4)) = f[n + 5/4];
p8 := simplify(eval(F, q = x + (3*h)/2)) = f[n + 3/2];
p9 := simplify(eval(F, q = x + (7*h)/4)) = f[n + 7/4];
p10 := simplify(eval(F, q = x + 2*h)) = f[n + 2];
r := seq(a[i], i = 0 .. 9);
s := p || (1 .. 10);

solve({s}, {r});

i used: 
Y := ssystem("dir C:"); print(Y)
result is

[0,"\" El volumen de la unidad C es OS\n El n£mero de serie del volumen es: 54A9-09DA\n\n Directorio de C:\\Program Files\\Maple 2016"

Windows operating system English version but Maple shows Spanish result
I want result is English. Please help me

Y := ssystem("dir C:"):

[0, " El volumen de la unidad C es OS
 El n£mero de serie del volumen es: 54A9-09DA

 Directorio de C:\Program Files\Maple 2016

21/02/2025  07:53 AM    <DIR>          .
22/02/2025  08:34 AM    <DIR>          ..
21/02/2025  07:50 AM    <DIR>          afm
21/02/2025  07:55 AM    <DIR>          bin.X86_64_WINDOWS
21/02/2025  07:52 AM    <DIR>          data
13/02/2025  07:46 AM    <DIR>          eBookTools
21/02/2025  07:50 AM    <DIR>          etc
02/02/2016  05:05 AM            73,861 EULA.html
21/02/2025  07:52 AM    <DIR>          examples
21/02/2025  07:52 AM    <DIR>          examplesclassic
21/02/2025  07:52 AM    <DIR>          Excel
21/02/2025  07:50 AM    <DIR>          extern
21/02/2025  07:52 AM    <DIR>          Fonts
13/01/2016  06:39 AM           223,499 Install.html
21/02/2025  07:52 AM    <DIR>          java
21/02/2025  07:52 AM    <DIR>          jre
21/02/2025  07:52 AM    <DIR>          lib
21/02/2025  07:55 AM    <DIR>          license
27/01/2011  11:13 PM             6,296 Maple Cloud Terms of Service.html
17/02/2016  02:54 PM         5,490,560 MapleToolbox2016.0WindowsX64Installer.exe
13/02/2025  07:48 AM           317,257 Maple_2016_Install_2025_02_13_08_46_07.log
21/02/2025  07:52 AM           317,834 Maple_2016_Install_2025_02_21_08_47_47.log
21/02/2025  07:50 AM    <DIR>          profiles
21/02/2025  07:52 AM             5,396 readme.txt
21/02/2025  07:52 AM    <DIR>          redist
21/02/2025  07:52 AM    <DIR>          samples
21/02/2025  07:52 AM    <DIR>          uninstall
21/02/2025  07:52 AM    <DIR>          update
13/02/2025  07:46 AM    <DIR>          Users
               7 archivos      6,434,703 bytes
              22 dirs  148,583,636,992 bytes libres"]

(1)

``

Download language_maple.mw

How can I display the symbol (blue solid circle) and the line (blue line) together in the legend box (( from   to ))?

plot(sin(x), x = -3 .. 3, colour = [blue], style = pointline, symbol = [solidcircle], numpoints = 20, legend = ["sin(x)"])

 

 
 

``

Download Plot1.mw

I have a file TEST.m. How can I make it so that every time I start Maple, all the subprograms in the TEST.m file will run first? Then I just need to type the function with(TEST): sumpro(2,3,4) to get the result 9. I copied the TEST.m file into Maple's lib directory, but it doesn't run after starting Maple.

I just need to type sumvip(2, 3, 4) to get the result, but Maple doesn't understand it.

Please help.

TEST := module () local sumpro; export sumvip; option package;  sumpro := proc (a, b, c) local sumex; sumex := a+b+c; printf("sum of %A , %A and %A is %A", a, b, c, sumex) end proc; sumvip := proc () sumpro(args) end proc end module:

save TEST, "TEST.m"

with(TEST)

[sumvip]

(1)

sumvip(2, 3, 4)

sum of 2 , 3 and 4 is 9

 

NULL

Download TEST.mw

Assuming I have a sumpro function written in Maple 2016. How can I implement it in C# and what is the process?

Please help me.

sumpro := proc (i) local a, b;

        a := (rand(1 .. 10))(); b := (rand(1 .. 10))();

        print("Sum of ", a, " and ", b, " is ", a+b)

end proc;

save sumpro, "D://Sumpro.m"

sumpro := proc (i) local a, b; a := (rand(1 .. 10))(); b := (rand(1 .. 10))(); print("Sum of ", a, " and ", b, " is ", a+b) end proc:
``

save sumpro, "D://Sumpro.m"

``

Download mapleprime_sumpro_to_c.mw

Hi

How we can reduce run time for Cases III and IV ? (Maple 2016)

Thanks alot

Formula_II.mw

Good day, all.

Please I want to solve the following delay differential equation:

ODE := diff(y(t), t$2) = (2*(1-y(t-1)^2))*(diff(y(t), t))-y(t)

ics := y(0) = 1, (D(y))(0) = 0

using the following codes but there is an error. Please kindly help to modify the codes.

restart;
Digits:=30:

f:=proc(n)
	2*(1-(y[n-1])^2)*delta[n]+y[n]:
end proc:

g:=proc(n)
	-4*y[n-1]*delta[n-1]+2*(1-(y[n-1])^2)*f(n)-delta[n]:
end proc:


e1:=y[n+2] = -y[n]+2*y[n+1]+(1/120)*h^2*(-3*h*g(n+2)+3*g(n)*h+16*f(n+2)+16*f(n)+88*f(n+1)):
e2:=h*delta[n] = -y[n]+y[n+1]-(1/1680)*h^2*(-128*h*g(n+1)-11*h*g(n+2)+59*g(n)*h+40*f(n+2)+520*f(n)+280*f(n+1)):
e3:=h*delta[n+1] = -y[n]+y[n+1]+(1/1680)*h^2*(-152*h*g(n+1)-10*h*g(n+2)+32*g(n)*h+37*f(n+2)+187*f(n)+616*f(n+1)):
e4:=h*delta[n+2] = -y[n]+y[n+1]+(1/1680)*h^2*(128*h*g(n+1)-101*h*g(n+2)+53*g(n)*h+744*f(n+2)+264*f(n)+1512*f(n+1)):

inx:=0:
ind:=0:
iny:=1:
h:=1/2:
n:=1:
omega:=10:
u:=omega*h:
N:=solve(h*p = 10, p):

err := Vector(round(N)):
exy_lst := Vector(round(N)):
numerical_y1:=Vector(round(N)):

c:=1:
for j from 0 to 2 do
	t[j]:=inx+j*h:
end do:

vars:=y[n+1],y[n+2],delta[n+1],delta[n+2]:

step := [seq](eval(x, x=c*h), c=1..N):
printf("%6s%45s%45s\n", 
	"h","Num.y","Num.z");
#eval(<vars>, solve({e||(1..4)},{vars}));


st := time():
for k from 1 to N/2 do

	par1:=x[0]=t[0],x[1]=t[1],x[2]=t[2]:
	par2:=y[n]=iny,delta[n]=ind:
	res:=eval(<vars>, fsolve(eval({e||(1..4)},[par1,par2]), {vars}));

	for i from 1 to 2 do
		printf("%6.5f%45.30f%45.30f\n", 
		h*c,res[i],res[i+2]):
		
		numerical_y1[c] := res[i]:
		
		c:=c+1:
	end do:
	iny:=res[2]:
	ind:=res[4]:
	inx:=t[2]:
	for j from 0 to 2 do
		t[j]:=inx + j*h:
	end do:
end do:
v:=time() - st;
v/4;
printf("Maximum error is %.13g\n", max(err));
NFE=evalf((N/4*3)+1);
#get array of numerical and exact solutions for y1
numerical_array_y1 := [seq(numerical_y1[i], i = 1 .. N)]:
#exact_array_y1 := [seq(exy[i], i = 1 .. N)]:

#get array of time steps
time_t := [seq](step[i], i = 1 .. N):

#display graphs for y1
with(plots):
numerical_plot_y1 := plot(time_t, numerical_array_y1, style = [point], symbol = [asterisk],
				color = [blue,blue],symbolsize = 20, legend = ["TFIBF"]);

 Thank you, and best regards.

How can numbers be displayed inside the contour plot?

 restart;
with(plots);
contourplot(x*exp(-x^2 - y^2), x = -2 .. 2, y = -2 .. 2, axes = boxed);
like this

I need admin's help
I use evalf(3*21/100,3)=0.630
and evalf(3*89/100,3)=2.67
Is there a way for me to get 2 decimal places
so evalf(3*21/100,3)=0.63?

Good day everyone,

I am writing a numerical code using dsolve which works fine but I have a challenge in inputting the previous answers in the subsequent ones. For example, how can I substitute the solutions in S1 into equ11, equ22, equ33, and equ44 in the link below? 

Thank you very much as I will be expecting responses from you soon.

New.mw

I want to express my two variable function f using Taylor expansion. But no success yet.

Why Taylor series can not estimate my function in desired interval [-1<x,y<1]?

restart

with(Student[MultivariateCalculus]):

 

f := -5023626067733175609651265492842895195168362165*xx^5*yy^9*(1/5575186299632655785383929568162090376495104)+2207379816207475241162406248223006569040862935*xx^5*yy^8*(1/2787593149816327892691964784081045188247552)+5795161625895678368156852916105373987594511979*xx^6*(1/22300745198530623141535718272648361505980416)-539977758872163289054492124375185771143918033*xx^6*yy*(1/696898287454081973172991196020261297061888)+782685832362921584689673760969891945953777553*xx^6*yy^2*(1/5575186299632655785383929568162090376495104)+749877940244270735637721966049124917356845885*xx^6*yy^3*(1/174224571863520493293247799005065324265472)+14159347676475748959036290080103848146860867025*xx^6*yy^4*(1/11150372599265311570767859136324180752990208)-2937701213452088192123555543440803264914467299*xx^6*yy^5*(1/348449143727040986586495598010130648530944)-23673134207774883972271882396704370580007933039*xx^6*yy^6*(1/5575186299632655785383929568162090376495104)-62755544772437504320590342390381422715234113715/89202980794122492566142873090593446023921664+35696532930567486560276536615522532283474689213*yy*(1/2787593149816327892691964784081045188247552)+43423414494451507811145033075147441881593811799*yy^2*(1/22300745198530623141535718272648361505980416)+1173296429365947392287371443632107462978009165*xx^6*yy^7*(1/174224571863520493293247799005065324265472)-56566850002827011453690682806041619180254985625*yy^3*(1/696898287454081973172991196020261297061888)+57447439083834576362467553225131370438848237035*xx^6*yy^8*(1/22300745198530623141535718272648361505980416)-1277356081222180962342283013232991241852904465*xx^6*yy^9*(1/696898287454081973172991196020261297061888)-29946355461657315300256240552185966952551471*xx^7*(1/1393796574908163946345982392040522594123776)+998213736763384913910074759047227544847506773*xx^7*yy*(1/11150372599265311570767859136324180752990208)-2038600361316622246653155899145012259420048867785*yy^4*(1/44601490397061246283071436545296723011960832)+10578825782023300845453772557509072093336001*xx^7*yy^2*(1/43556142965880123323311949751266331066368)-4303517165264733669855129139552505045324631645*xx^7*yy^3*(1/11150372599265311570767859136324180752990208)-652299342907430898149182084981866414949696905*xx^7*yy^4*(1/696898287454081973172991196020261297061888)+11170081785792631086653879206603595320491089331*xx^7*yy^5*(1/11150372599265311570767859136324180752990208)+116540829629507365267125159526451609264014215*xx^7*yy^6*(1/87112285931760246646623899502532662132736)+211134394987302797546644924545169826774270265159*yy^5*(1/1393796574908163946345982392040522594123776)-14785537121406447202257499440081382142298519099*xx^7*yy^7*(1/11150372599265311570767859136324180752990208)+1970986683407627074325019523003479974617451789943*yy^6*(1/22300745198530623141535718272648361505980416)-868641325364973493898126340263842300348545855*xx^7*yy^8*(1/1393796574908163946345982392040522594123776)+216255546256559295251079313253452049445763455*xx^7*yy^9*(1/348449143727040986586495598010130648530944)-4089215965643055747590786827106386135115380275*xx^8*(1/89202980794122492566142873090593446023921664)+1869246621670048362557342074310025153518449965*xx^8*yy*(1/2787593149816327892691964784081045188247552)+18712604797880071317805036942199122521197359575*xx^8*yy^2*(1/22300745198530623141535718272648361505980416)-3479476522267890993628796487849129439635143625*xx^8*yy^3*(1/696898287454081973172991196020261297061888)-77131555128675321096947207038878222843991869993*yy^7*(1/696898287454081973172991196020261297061888)-206512033439850904054937113093163624192322042825*xx^8*yy^4*(1/44601490397061246283071436545296723011960832)+15350689937843699961175740256400109996121380375*xx^8*yy^5*(1/1393796574908163946345982392040522594123776)+157001869330425518481531763580902779395436599415*xx^8*yy^6*(1/22300745198530623141535718272648361505980416)-6686861200533386632065997818427854246215113305*xx^8*yy^7*(1/696898287454081973172991196020261297061888)-3917684154726736823398471536296978037714283086195*yy^8*(1/89202980794122492566142873090593446023921664)-285743684916570536194588196441080828723328178675*xx^8*yy^8*(1/89202980794122492566142873090593446023921664)+8094790880015327525694605814920739418439287725*xx^8*yy^9*(1/2787593149816327892691964784081045188247552)+30423874459994412977383604476886160940746185*xx^9*(1/5575186299632655785383929568162090376495104)-1197236208181378637639504269592639035279087665*xx^9*yy*(1/44601490397061246283071436545296723011960832)-72716798311978341010558827315982986191821905*xx^9*yy^2*(1/696898287454081973172991196020261297061888)+5138909461003175489938484170634052266819688725*xx^9*yy^3*(1/44601490397061246283071436545296723011960832)+1206817075246069632318716986669541278160772775*xx^9*yy^4*(1/2787593149816327892691964784081045188247552)-12993287722661922638788467553649639108437064835*xx^9*yy^5*(1/44601490397061246283071436545296723011960832)-431284328058774504067793959976795724976545555*xx^9*yy^6*(1/696898287454081973172991196020261297061888)+17639360745426635511855086638766468926126459875*xx^9*yy^7*(1/44601490397061246283071436545296723011960832)-2146702909675882809503682033933399905335826325*xx^9*yy^9*(1/11150372599265311570767859136324180752990208)+1587967252519403636411870604735180043125989625*xx^9*yy^8*(1/5575186299632655785383929568162090376495104)+76828297887427851822683521168415270943435162685*yy^9*(1/2787593149816327892691964784081045188247552)+220816865194317615868568855814620996552449073*xx*(1/5575186299632655785383929568162090376495104)-9205355621994819342146712860571987786619361601*xx*yy*(1/44601490397061246283071436545296723011960832)-104255809907916433055923335622932126645726549*xx*yy^2*(1/696898287454081973172991196020261297061888)+27484692689867334306687311759874973819976026005*xx*yy^3*(1/44601490397061246283071436545296723011960832)+1583056855557692418384969876461998197073089695*xx*yy^4*(1/2787593149816327892691964784081045188247552)-36304948749180317956941914133403396762716230691*xx*yy^5*(1/44601490397061246283071436545296723011960832)-590212436135125327923049635849260481403670583*xx*yy^6*(1/696898287454081973172991196020261297061888)+27046038795224386955728969793334632924015008227*xx*yy^7*(1/44601490397061246283071436545296723011960832)+2168816628024980374461014350770096009019357665*xx*yy^8*(1/5575186299632655785383929568162090376495104)-2255097230860381206152749351617455809672044745*xx*yy^9*(1/11150372599265311570767859136324180752990208)+35122173917479363738100862234581108137514304171*xx^2*(1/22300745198530623141535718272648361505980416)-17449701902039745490242163912540688306429882361*xx^2*yy*(1/696898287454081973172991196020261297061888)-11540959773500599403794316292492996114189538863*xx^2*yy^2*(1/5575186299632655785383929568162090376495104)+27287439738914744607616926917914225474665410565*xx^2*yy^3*(1/174224571863520493293247799005065324265472)+929769947314964740179937673332890647768037984465*xx^2*yy^4*(1/11150372599265311570767859136324180752990208)-100809382380090436397261413740272360141145204891*xx^2*yy^5*(1/348449143727040986586495598010130648530944)-930314746723434588666177195703059675161177190255*xx^2*yy^6*(1/5575186299632655785383929568162090376495104)+36390552938954376406834468187448925576623439893*xx^2*yy^7*(1/174224571863520493293247799005065324265472)+1872760743346397986120124413411813119412045269675*xx^2*yy^8*(1/22300745198530623141535718272648361505980416)-35643509355104072817665294345590475660747146425*xx^2*yy^9*(1/696898287454081973172991196020261297061888)-125283292999146417157156696376640452081866835*xx^3*(1/1393796574908163946345982392040522594123776)+5011420945327438626354964312196465908094234685*xx^3*yy*(1/11150372599265311570767859136324180752990208)+29341459645317546529685572705520876577051855*xx^3*yy^2*(1/87112285931760246646623899502532662132736)-15637727799880882327290754576104647826715168925*xx^3*yy^3*(1/11150372599265311570767859136324180752990208)-851688199122087410134053760306093104684621525*xx^3*yy^4*(1/696898287454081973172991196020261297061888)+23458516464006675395891679247259419002768896835*xx^3*yy^5*(1/11150372599265311570767859136324180752990208)+39584968580329795728950940517214770307434335*xx^3*yy^6*(1/21778071482940061661655974875633165533184)-20361225581568567923686744589522827658576624955*xx^3*yy^7*(1/11150372599265311570767859136324180752990208)-1174244552874873223035231031480900497934023075*xx^3*yy^8*(1/1393796574908163946345982392040522594123776)+941109349474535911451616661821106567867537125*xx^3*yy^9*(1/1393796574908163946345982392040522594123776)-48412290717709997717153300332089796247538326265*xx^4*(1/44601490397061246283071436545296723011960832)+17196469545705046799299985950707233685621881055*xx^4*yy*(1/1393796574908163946345982392040522594123776)-9551461763890264957289963973620923748598225435*xx^4*yy^2*(1/11150372599265311570767859136324180752990208)-26051472095770585704126329008135447818638784275*xx^4*yy^3*(1/348449143727040986586495598010130648530944)-765302392604646459013613426858243443467023490875*xx^4*yy^4*(1/22300745198530623141535718272648361505980416)+94251624724512021502035994822030873708141367565*xx^4*yy^5*(1/696898287454081973172991196020261297061888)+843981485493394825713526892530506348990296828805*xx^4*yy^6*(1/11150372599265311570767859136324180752990208)-33218490572036542393092937176469859040906121155*xx^4*yy^7*(1/348449143727040986586495598010130648530944)-1758702445038817232726176779731884586549332868025*xx^4*yy^8*(1/44601490397061246283071436545296723011960832)+31380186488931551370058361496245928395816772575*xx^4*yy^9*(1/1393796574908163946345982392040522594123776)+184838927094446995029201369223921105703104647*xx^5*(1/2787593149816327892691964784081045188247552)-6817973449093402642853212701104432585928821163*xx^5*yy*(1/22300745198530623141535718272648361505980416)-113510140727511300460098712979462156361337425*xx^5*yy^2*(1/348449143727040986586495598010130648530944)+23570688854853763073042723518782612790921757535*xx^5*yy^3*(1/22300745198530623141535718272648361505980416)+1613038118657167505912389296857854524947676825*xx^5*yy^4*(1/1393796574908163946345982392040522594123776)-44608078263668464626393951292252447406629869273*xx^5*yy^5*(1/22300745198530623141535718272648361505980416)-588774433706353379897742534304221654039246663*xx^5*yy^6*(1/348449143727040986586495598010130648530944)+47950825635610780986659544491454706340397108297*xx^5*yy^7*(1/22300745198530623141535718272648361505980416):

g := .5*(1+tanh(f)):

plot3d(g, xx = -1 .. 1, yy = -1 .. 1, color = red, style = surface)

 

 

h := Student:-MultivariateCalculus:-TaylorApproximation(g, [xx, yy] = [0, 0], 35):

plot3d(h, xx = -1 .. 1, yy = -1 .. 1, color = red, style = surface)

 

 

Download taylorProblem.mw

How will I use maple 2016 to solve ODEs and showing the steps involved because this will increase my understanding in it. 

Dear Colleagues,

I wish to use plot3d to the attached code but always encoutered error. However, pointplot3d runs perfectly. Please I need your assistance in this regards.

Thank you all and best regards.K2_Problem_2_two_body_kepler_e=0.mw

1 2 3 4 5 6 7 Last Page 1 of 61